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CAN XL offers data-rates and payload sizes that are 
many times higher than in Classical CAN and CAN FD 

[1], [2]. Error detection is a crucial functionality provided 
by communication protocols. A receiving node has to be 
able to judge if a frame was received with or without errors. 
Autonomous driving and other safety relevant applications 
require that frame errors are detected with a very high 
probability. The acceptance of an erroneous frame should 
be practically impossible. This article first introduces the 
three CAN error types known in literature that might occur 
in a frame in harsh environments: (1) bit error, (2) bit drop 
and bit insertion, (3) burst errors. The two main pillars  
of the CAN error detection mechanism are: (A) the 
cyclic redundancy code (CRC) check and (B) the format  
checks. Both pillars are strengthened during the currently 
RQJRLQJ� VSHFLILFDWLRQ� RI� &$1� ;/�� WR� ILW� WR� WRPRUURZ·V�
applications.

We explain how these pillars were improved. Therefor 
we show the reasons for the chosen CRC concept of 
having both a header CRC and a frame CRC in a CAN XL 
frame. Further, we introduce the available format checks 
in CAN XL. Finally, we show systematically how the CAN 
XL error detection mechanisms master to detect the three 
error types. A deep dive into the properties and strengths 
of the used CRC polynomials is given in [9].

Introduction

&$1�;/�LV�FXUUHQWO\�EHLQJ�VSHFLILHG�LQVLGH�WKH�&L$·V��&$1�
in Automation) CAN XL Special Interest Group. The first 
specification meeting took place in Nuremberg (Germany) 
on December 17th 2018. The CiA 610-1 specification doc-
ument, which focuses on OSI layer 2 (known as CAN XL 
protocol), was not yet finished at the time of writing this ar-
ticle. Consequently, the final CiA 601-1 specification may 
show differences compared to the content presented in 
here. [3] gives an overview about the current CAN XL sta-
tus. Some of the main features of CAN XL are:

 X data field size up to 2 048 byte
 X gross bit-rate of 10 Mbit/s and more
 X strong error detection capabilities

With its higher data-rates and payload sizes, CAN XL is the next step in the 
evolution of CAN. Besides this, CAN XL also provides improved error detection 
capabilities.

CAN XL error detection capabilities

With this set of features CAN enables the usage 
of higher layer protocols like IP (Internet Protocol). At 
the same time, it eases the implementation of safety 
critical applications with its excellent error detection 
capabilities and its well-known robustness. Two very 
essential functions in a communication protocol are the 
error detection and the error handling. They have a large 
impact on the reliability of the communication system. The 
focus of this article is the error detection mechanisms in  
CAN XL.

This article consist of three parts. Part 1 introduces 
the CAN XL error detection mechanisms and explains how 
these were improved compared to CAN FD. In this part, the 
reasons are given for the chosen CRC concept of having 
a header CRC and a frame CRC in a CAN XL frame. Part 
2 introduces the error types known in literature, along with 
their properties. Part 3 performs a systematic evaluation to 
show how the CAN XL error detection mechanisms master 
to detect all known error types up to a given extent.

CAN XL error detection mechanisms

In CAN communication, all nodes in a network check the 
validity of each frame,  including the transmitter of the cur-
rent frame. The checks are based on a combination of  
several protocol mechanisms for error detection. They are 
described in the following. Figure 1 shows the current ver-
sion of the CAN XL frame format. The bits used to imple-
ment additional or updated error detection mechanisms 
(compared to CAN FD) are shaded.

Bit monitoring 

Bit monitoring means that a node that transmits a bit 
also monitors the bit values on the CAN network. If the 
transmitted and received (monitored) bit values differ, the 
reaction of the node depends on the bit position in the 
frame. As example, if the transmitting node transmitted a 
1 and received a 0 in the data field, it regards this as a bit 
error. However, if the same happens in the arbitration field, 
it regards this as arbitration lost.

Figure 1: CAN XL frame format (Source: Bosch)
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A detailed explanation of the bit monitoring in  
CAN FD can be found in [10]. If error signaling  
(via error frames) is enabled in CAN XL, bit  
monitoring is nearly equal to that in CAN FD. For  
the case that error signaling is disabled, bit  
monitoring is not yet fully specified in the current  
CiA 610-1 draft.

Frame format check 

Most parts of a CAN frame (identifier, control, or data bits) 
are variable or are calculated from the variable bits (CRC 
sequence), but some bits (delimiters, end of frame) have a 
fixed format (see figure 1). The bit values of these bits are 
marked in the figure with a bold line. A receiver detects a 
form error when it samples a fixed format bit with the wrong 
value.

A special case is the reserved bit following the 
XLF bit in CAN XL frames. The reserved bit is expected 
to be dominant. In current applications, a form error is 
detected when this bit is sampled as recessive. For future 
applications, this bit may be used to distinguish between 
the CAN XL frame format and another – not yet defined 
– new frame format. When this alternative is selected (by 
software configuration) and if then this bit is sampled as 
recessive, the receiver enters a protocol exception state 
until the network is idle again. This allows the introduction 
of future new frame formats that are tolerated by existing 
CAN XL implementations.

A node transmitting a CAN XL frame sends the FDF 
DQG�;/)�ELWV�DV�UHFHVVLYH��ORJLFDO�¶�·���7KHVH�ELWV�DUH�SDUW�
of the arbitration field, which is different compared to CAN 
FD. This means, if the transmitting node samples one of 
these bits as dominant, it loses arbitration and becomes 
a receiver.

In CAN XL, beside the bit-rate, also the mode  
of the transceiver can be switched. In the error free  
case, the CAN XL protocol controller signals the mode 
switch to the transceiver during the bits AL1 and AH1. The 
signaling of the mode switch to the transceiver, as well as 
the mode switch of the transceiver may have side effects 
on the RXD input signal of the protocol controller. Due to 
this, a CAN XL node does not perform a format check at 
the fixed format bits (bold lines mark bit value) AL1 and 
AH1.

Format check pattern (FCP)

The FCP field contains only fixed format bits and is  
used by a receiver for two purposes. The first purpose  
is that it provides a synchronization edge before the 
receiver switches from the data phase to the arbitration 
phase.

The second purpose is that a receiver can 
check with help of the FPC field if its frame decoding 
is aligned with the actual transmitted bit position.  
Disturbed synchronization edges may lead to so called  
bit insertions and bit drops in the receiver. A receiver  
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can detect, with help of the FPC field, a misalignment  
of 3 bit in both directions.

CRC concept

In general, the transmitter and the receivers of a frame cal-
culate the CRC (cyclic redundancy check ) sequence. After 
reception of the CRC sequence, each receiver performs a 
CRC check, to judge if it received the frame correctly or 
not.

)RU� WKH� &5&·V� HUURU� GHWHFWLRQ� FDSDELOLW\� WR� VXFFHHG�
with a very high probability the following two requirements 
have to be fulfilled:

 X RQ1: Transmitter and receiver of the frame calculate the 
CRC sequence based on the equal number bits.

 X RQ2: The receiver checks the CRC sequence at the 
right position inside the transmitted frame.

To fulfill RQ1, the CAN XL frame format uses fixed 
stuff bits in nearly the whole frame. Dynamic stuff bits are 
only used in the first bits of the header, to be compatible to  
CAN FD. A bit insertion or drop error at a dynamic stuff 
condition changes the number of bits fed into the CRC. As 
the error just adds or removes a dynamic stuff bit, the format  
checks described up to now cannot detect that error. With  
fixed stuff bits, the frame has a defined length in bits and 
the receiver can feed the exact number of bits into the  
CRC calculation.

To fulfill RQ2, we need to make sure that a transmission 
error cannot change easily the position, where the receiver 
expects the CRC. For example, if the DLC (data length code) 
is falsified, the receiver checks the CRC at a wrong position. 
To solve this, CAN XL uses, like Flexray, a header CRC, and 
a frame CRC. The header CRC safeguards a header of well-
known length. If a receiver saw a valid header CRC, it is very 
likely that the DLC is correct. With the correct DLC, the data 
field length is also well known.

Scope of the frame CRC

The frame CRC is calculated over the header and the data 
field (see figure 1), which is similarly done in Flexray. The 
author in [9] describes in detail, which bits are included and 
which are excluded from CRC calculation. This “double 
checking” of the header is done, because on the one side 
the frame CRC performance is practically not weakened by 
safeguarding these few additional header bits. On the other 
side, “double checking” increases the probability to detect 
transmission errors in the header, which were not detected 
by the header CRC.

Dynamic stuff bits

If the dynamic stuff bits are not included into a CRC calcu-
lation (like in Classical CAN), an undetectable error can be 
caused by two bit flips, if one bit flip adds and the other re-
moves a dynamic stuff condition. This case is described in 
[4]. If the dynamic stuff bits are included into the CRC cal-
culation (like in CAN FD), the CRC calculation may be vul-
nerable to bit insertions and bit drops at dynamic stuff con-
ditions [10]. CAN XL includes the dynamic stuff bits into the 
header CRC calculation, but excludes them from the frame 

CRC calculation. This enables detection of both aforemen-
tioned error cases.

In [9] the author assesses the performance of the 
CAN XL CRC polynomials and compares the results with 
the CRC polynomials used in Flexray and Ethernet. Both 
CAN XL CRC polynomials guarantee at least a Hamming 
distance (HD) of 6, up to the largest CAN XL frame length. 
This means that at least 5 bit errors can be detected. Beside 
this, both CRCs are able to detect any odd number of bit 
errors. Regarding burst errors, the header CRC can detect 
one burst error of up to 13 bit length, and the frame CRC of 
up to 32 bit length.

Acknowledgement

Transmitters expect to get an active acknowledgement for 
their frames, which is a dominant bit in the ACK (acknowl-
edgement) slot. When a transmitter does not sample a dom-
inant bit during ACK slot, it regards this as an ACK error. The 
transmitter considers a frame that does not get an acknowl-
edgement as invalid and retransmits it (if retransmission is 
not intentionally disabled).

Stuff rule check

The bits of a CAN frame are coded by the method of bit 
stuffing. CAN uses as line coding Non-Return-to-Zero (NZR) 
which has no guaranteed edges. The purpose of stuff bits 
is to ensure that there are enough edges in the bit stream 
for resynchro-nization of the receivers. Receivers check the 
stuff rule and detect a stuff error if the stuff bit has not the 
expected value.

Before the FDF bit, a dynamic stuffing rule is applied. 
That means, the transmitter inserts, after each sequence of 
five consecutive equal bits, one bit of inverse value, called 
a dynamic stuff bit.

In the data phase, starting at DL1 bit up to the last bit 
of FCRC, a fixed stuffing rule is applied. That means, the 
transmitter inserts, after S 1 consecutive bits a fixed stuff bit. 
The fixed stuff bit has the inverse value of its preceding bit. 
This means every Sth bit is a fixed stuff bit. Currently S=15, 
but this value may be decreased in the final specification, 
depending on the results of the phase margin calculations.

Dynamic stuff count check

For compatibility reasons with CAN FD, the CAN XL frame 
header uses dynamic bit stuffing in the header before the 
FDF bit. To satisfy requirement RQ1 from chapter 2.4, we 
need to make sure that transmitter and receiver of a frame 
see the same amount of dynamic stuff bits. CAN FD solved 
this requirement by adding the field SBC (stuff bit count) 
which contains the number of dynamic stuff bits in the frame 
modulo 8.

CAN XL also uses this this solution and has therefore 
an SBC field in the header of the frame. It is located before 
the header CRC, because it is used to check the validity of 
the header. The number of dynamic stuff bits in a CAN XL 
frame is in the range 0 to 3. Therefore, the SBC field in the 
CAN XL frame has 3 bits, the first 2 bits contain informa-
tion on the number of dynamic stuff bits in the arbitration 
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field and the 3rd bit is a parity bit. The receiver detects a 
header CRC error if the SBC does not match to the num-
ber of received dynamic stuff bits, or if the SBC parity does 
not match.

Error signaling

CAN XL allows to enable or to disable error signaling. 
The software can enable and disable error signaling with 
a configuration bit in the CAN XL implementation. In case 
the user disables error signaling, the respective CAN XL  
node does not transmit error frames. In case the  
user enables error signaling, the error signaling is  
done with help of error frames, which is identical to  
the error signaling in CAN FD, which is described  
in [10]. Error signaling with error frames disturbs the  
current frame and thereby converts local errors into  
global errors in order to ensure data consistency in the 
network.

Improved error detection in CAN XL

This chapter highlights the five improvements in the CAN 
XL error detection compared to CAN FD.
1. Header CRC: The newly introduced header CRC 

allows checking the validity of the header, which 
includes the DLC value. This allows fulfilling RQ2 
and by this strengthens the CRC check.

2. Frame CRC: CAN XL uses a 32-bit frame  
CRC with a respective CRC generator polynomial 
to keep the Hamming distance at 6 (HD6)  
despite the long data field. The frame CRC polynomial  
was chosen carefully and it outperforms the  
polynomials of Ethernet and Flexray according  
to [9].

3. Fixed stuff bits: CAN XL uses fixed stuff bits in the  
data phase of the frame (short bits). This allows  
fulfilling RQ1 and by this strengthens the CRC  
check.

4. Frame CRC safeguards the header: The frame 
CRC also safeguards the header, which means a  
“double checking” for the header. To do this  
effectively, it excludes the dynamic stuff bits. The 
reason for that is given further in the article and can  
be summarized as follows: If the CRC calculation 
does not include dynamic stuff bits, it is vulnerable 
to a special error case known from Classical  
CAN [4]. If it includes dynamic stuff bits, it is 
vulnerable to another error case [10]. The header CRC  
safeguards the header including dynamic stuff bits 
and the frame CRC safeguards the header excluding 
dynamic stuff bits. This enables detection of both 
special error cases.

5. FCP (format check pattern): The format check  
pattern is a new field (see chapter 2.3). The  
receiver checks via FCP if it is aligned to the  
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transmitted bit position. A receiver can detect, with  
help of the FPC, a misalignment of 3 bit in both 
directions.

Error types

This chapter gives an overview of the existing error types. 
Details to these error types are described in [10].

Bit error or bit flip means that a CAN node samples 
a bit with the inverse (flipped) value compared to the 
transmitted bit value. Figure 2 shows an example for such 
a bit error at bit 3.

Bit drop or bit insertion means that a receiving node 
drops a bit from or inserts a bit into the bit sequence. This 
is caused by a disturbed RXD signal and can occur only in 
receiving nodes.

In order to cause a bit drop or insertion, the following 
needs to happen: A disturbance (e.g. EM radiation) 
influences the CAN physical layer. As consequence, 
additional or shifted falling edges appear in the RXD signal. 
The receiving node resynchronizes, based on these faulty 
edges. This resynchronization may increase the phase 
error ([6], [2]) between transmitting and receiving node. 
When the absolute value of the phase error is above a 
critical level, the receiving node drops a bit from or inserts 
a bit into the bit sequence.

Figure 3 shows an example for a bit drop. Here a 
resynchronization on a falsified edge causes the receiver 
to drop one bit. The receiver samples the transmitted bit 
VHTXHQFH�´������Lµ�DV�´������µ��¶L
�VWDQGV�IRU�D�G\QDPLF�
stuff bit).

Important properties of bit drops and bit insertions  
are [10]:

 X They can theoretically happen at any position in the 
frame. It is not limited to dynamic stuff conditions.

 X This error type requires many pre-requirements: e.g. 
large clock tolerance between sender and receiver, 
disturbance needs to hit one or more dedicated edges, 
etc.

 X Drop and insertion can practically not happen in the 
same frame. However, several bit drops or several bit 
insertions may happen in the same frame.

Figure 3: Bit drop example (Source: Bosch)

Figure 2: Bit error example (Source: Bosch)

 X Since many factors have to come together, a bit drop or 
insertion is much more difficult to cause, compared to a 
bit error. Therefore, one bit drop or insertion should be 
considered from the likelihood point of view as a “multi 
bit error”.

Several bit errors that are locally close to each  
other are called a burst error. The burst length (in bit) is  
the distance from the first to the last bit error. We  
distinguish here two types of burst errors. Type 1 is where  
all bits in the burst are forced to the same value, e.g.  
by a glitch. Figure 4 shows an example. We consider  
this a realistic type of burst error on the CAN physical layer. 
The second type of burst error is type 2, where several 
bits are flipped, but not necessarily all. Figure 5 shows  
an example.

We assume this type of burst error is very unlikely to 
be caused by glitches.

However, this type of burst error can be caused by two 
errors, where the first error leads to a misalignment of the 
receiver and the second error reverts the misalignment. As 
long as the receiver is misaligned, it sees all transmitted 
bits shifted by e.g. 1 bit. This can be achieved by two 
bit errors, where the one adds a dynamic stuff condition  
and the other bit error removes a dynamic stuff  
condition [4]. Consider that the CAN XL frame uses 
dynamic bit stuffing only at the beginning of the frame.  
The header CRC can detect this error easily, as it does 
include dynamic stuff into the CRC calculation – this  
means from header CRC point of view, there is no 
misalignment and consequently the two bit errors cause 
no burst error.

Another way to cause such a temporal misalignment 
of the receiver is a bit drop and a bit insertion in the same 
frame [10], which could theoretically occur also in the  
CAN XL data field [10]. However, one bit insertion and one 
bit drop, both in the same frame, are assumed practically 
impossible to occur [10].

Table 1 gives an overview to the error types known 
in CAN. The table also shows how an external cause  
(like a glitch on the bus lines) or an internal cause (like 
wrong system design) can create these errors. Further, it 
shows which error detection mechanism can detect the 
error.

Figure 4: Burst error – all bits forced to one value (Source: 
Bosch)

Figure 5: Burst error – due to several bit errors (Source: 
Bosch)
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Evaluation: burst error detection

We introduced two burst error types. As described, burst 
errors of type 2 (several bits are flipped, but no necessari-
ly all) can be caused by several circumstances. Based on 
the arguments we mentioned, we conclude that this type 
2 burst error is practically extremely unlikely to occur and 
therefore can be neglected.

Burst error type 1 (all bits in the burst are forced to  
the same value, e.g. by a glitch) is considered as very real-
istic. The remainder of this chapter evaluates if and how 
the error detection mechanisms can detect such a burst 
error.

Since CAN XL can be used at different bit-rates, the 
same glitch on the bus lines can cause very different error 
scenarios for a receiver. Figure 6 visualizes the impact of 
a 2 us glitch. At 500 kbit/s this leads to one bit error, while 
at 2 Mbit/s it leads to a burst error of 4 bit and at 8 Mbit/s it 
leads already to a burst error of 16 bit.

The diagram in figure 7 shows the relation between 
glitch length and burst length in bits. Two glitch lengths 
are shown: 2 us and 5 us. These glitches translate to a 
burst duration of the same value. The actual glitch length 
that may occur on a specific CAN network depends on the 
environment around the CAN network. The authors in [7] 
observed in a very aggressive environment an average 
burst duration of 5 us. For example, at 5 Mbit/s a 5 us glitch 
causes a burst length of 25 bit.

Figure 6: Errors caused by a 2 us glitch at different bit rates 
(Source: Bosch)

Figure 7 : Error detection mechanisms versus burst errors 
(Source: Bosch)
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Table 1: Overview of error types in CAN

Figure 7 also shows the main CAN XL error detection  
mechanisms that are capable detecting burst errors.

 X Stuff rule check: The focus is here on the data phase 
where each Sth bit is a fixed stuff bit. Figure 7 assumes 
S=10. The arrow in the figure shows, that this check 
can detect any burst error with a length larger than 
S bit. Shorter burst errors may also be detected, but 
only if they hit a stuff bit. With S=15 the effectiveness 
decreases slightly for short burst lengths.

 X Frame CRC: The frame can detect one burst error with 
a length of up to 32 bit.

 X Header CRC: The header can detect one burst error 
with a length of up to 13 bit.

We conclude that both, the header and frame CRC, 
can detect one short burst error and the stuff rule check 
can detect long burst errors. In sum, these mechanisms 
can detect all burst errors.

Evaluation: detection of bit errors and bit 
drops/insertions

This chapter focuses on the two remaining error types: “bit 
errors” and “bit drops/ insertions”. It evaluates systemati-
cally whether they can be detected by CAN XL. The evalu-
ation is limited to 5 bit errors (corresponds HD6) and 2 bit 
insertions/drops (corresponds to an equivalent of roughly 
>4 bit errors).

To simplify the description, the CAN XL frame is 
virtually partitioned into four parts. The evaluation in 
table 2 is partitioned accordingly. In each part, both error 
types are listed. For each error type, the relevant number 
of occurrences of this error type are listed. Additionally, 
special error cases generated by these two error types at 
dynamic stuff bits are also listed. Consequently, each row 
of the table corresponds to one error case. For each error 
case, the table contains information about the misalignment 
of the receiver and the way in which the receiver detects 
the error.
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Bit error
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Glitch length:
ʜ�RQH�ELW�OHQJWK

Bit asymmetry is too 
large

o CRC check
o Format checks 
 (limited)

Different bit error rates 
(BER) mentioned in:
[4], [5], [7], [8]

Bit insertion
or bit drop

Glitch length:
< one bit length

CAN clock tolerance 
is too large

o Format checks, FCP
o Dynamic stuff bit 
 count (SBC)

First described in [10]

Burst error Glitch length:
> one bit length

temporary misalign-
ment of receiver to 
transmitted bit stream

o Format checks
o CRC check (up to a 
 limited burst length

[7] mentions an average 
burst error length of 5 us;
[8] is less explicit
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Table 2: Systematic overview of error cases

Summary and conclusion

CAN XL has five major improvements regarding error 
detection, compared to CAN FD. These are (1) header 
CRC, (2) 32 bit frame CRC, (3) fixed stuff bits in the data 
phase, (4) frame CRC additionally safeguards header, (5) 
format check pattern.

Three major error types are known in CAN: (1) Bit 
error, (2) bit drops/insertions, and (3) burst errors. These 
error types are introduced in detail.

The article shows how the error detection 
mechanisms can detect a burst error, where all bits in 
the burst are forced to the same value, independent of its 
length. Further, it shows systematically how bit errors and 
bit drops/insertions can be detected up to a given extent. 
We conclude that the error detection mechanisms in CAN 
XL can detect all known error types to a sufficient extent. 
This work can serve as basis for a review of the CAN XL 
error detection capabilities, which is planned by the SIG  
CAN XL.                                                                              W

 

Case Receiver 
misalignment 

Error detected mainly by 

Frame part 1 [SOF to IDE] 
Bit drop or insertion @ dynamic stuff condition 
 1 bit drop or insertion no SBC (dynamic stuff bit count changes) 
 2 bit drops or insertions no SBC (dynamic stuff bit count changes) 
 1 bit drop + 1 bit insertion 1 bit temporary 

for CRC 
Practically not possible; header CRC 

   
Bit drop or insertion @ no dynamic stuff condition 
 1 bit drops or insertion 1 bit Format check: IDE = ‘1’ or FDF = ‘0’ 
 2 bit drops or insertions 2 bit Format check: IDE = ‘1’ or XLF = ‘0’ 
 1 bit drop + 1 bit insertion 1 bit temporary Practically not possible; header CRC  
   
Bit error @ dynamic stuff condition � adds or removes stuff condition 
 1 bit error (add/remove) 1 bit Format check: FDF = ‘0’ or IDE = ‘1’ 
 2 bit errors (add/remove) 2 bit Format check: XLF = ‘0’ or IDE = ‘1’ 
 3 bit errors (add/remove) 3 bit AL1 = ‘1’ � transceiver will be not switched; or format check: 

FDF = ‘0’ 
 1 bit error (add) + 
 1 bit error (remove) 

not for CRC Header CRC 

   
Bit error @ no dynamic stuff condition 
 1 to 5 bit errors no Header CRC 
   
Frame part 2 [FDF to AL1] 
Bit drop or insertion yes Format Check 
Bit error no Format Check 
   
Frame part 3 [DH1 to HCRC] 
Bit drop or Insertion   
 1 bit drop or insertion 1 bit If DLC wrong � all together, else FCP 
 2 bit drops or insertions 2 bit If DLC wrong � all together, else FCP 
 1 bit drop + 1 bit insertion 1 bit temporary Practically not possible; header CRC 
   
Bit error   
 1 to 5 bit errors no Header CRC 
   
Frame part 4 [Data field and CRC field] 
Bit drop or insertion 
 1 bit drop or insertion 1 bit FCP 
 2 bit drops or insertions 2 bit FCP 
 3 bit drops or insertions 3 bit FCP 
 1 bit drop + 1 bit insertion 1 bit temporary Practically not possible 
   
Bit error 
 1 to 5 bit errors no Frame CRC 
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These properties include achieving Hamming distance 
6 for the full range of possible message lengths. At 

the beginning of the article, a self-contained recap of CRC 
codes is given.

A new version of the CAN protocol is currently under 
development: CAN XL. With net data rates up to 10 Mbit/s 
and beyond, it is designed to bridge the gap between CAN 
FD and 100Base-T1 Ethernet [1]. Among the design goals 
for CAN XL are full interoperability with CAN FD as well as 
large payload length (up to 2 048 byte) in order to enable the  
use of higher layer protocols such as IP (Internet Protocol) 
and even encapsulation of complete Ethernet frames [2]. 

As in any communications system, data transmission 
in CAN XL is not perfect and transmission errors are inevi-
table. That is, a transmitted logical zero is detected at the 
receiver as a logical one or vice versa — a so-called bit 
error or bit flip. Due to certain physical perturbances in an 
actual system, bit errors tend to occur in temporally con-
fined groups: so-called burst errors.

Based on elaborate mechanisms that exploit the  
CAN FD/CAN XL frame structure, certain transmission 
errors can be detected [3], [4] and corresponding mea-
sures can be taken. Frame structure-based error detection 
alone is not able to provide the required state of the art error 
GHWHFWLRQ� SHUIRUPDQFH� IRU� WRGD\·V� DSSOLFDWLRQV�� QDPHO\�
probability of undetected bit error below 10-20 and guaran-
tee to detect burst errors of a certain length. Thus, in order 
to provide the required error detection performance, CRC  
(cyclic redundancy check) codes are employed (Note: that 
the term “cyclic” at this point is misleading, as many CRC 
codes used these days do not actually fulfill the defini-
tion of a cyclic code (cf. textbooks on error control coding 
such as [5]). Today, this naming is mainly used for histori-
cal reasons).

Competing standards such as Flexray and Ethernet 
also use CRC codes for error detection and it is our goal to 
provide at least the same or better error detection perfor-
mance for CAN XL. This can be accomplished by choos-
ing particular CRC codes, which is the main contribution of 
this article.

Choosing a particular CRC code is based on cer-
tain performance criteria such as the probability of unde-
tected error and the maximal length of a burst error that 
can be detected with certainty. These in turn depend on the 
messages that need to be protected and thus on the CAN 
XL frame structure. The choice is particularly challenging 
in cases where the messages have variable lengths. For 
that reason, it was decided early on in the design process of 

CRC generator polynomials for detection of transmission errors in headers and 
frames of the upcoming CAN XL standard are proposed. Properties, which 
are chosen to provide error detection performance (compared to competing 
standards) in the CAN XL scenario, are described.

CRC error detection for CAN XL

CAN XL to protect the comparatively short and fixed-length 
header by a so-called header CRC and the whole frame  
(whose length may vary from several to more than 2 000 byte)  
by a separate CRC, the so-called frame CRC.

CRC codes

We restrict ourselves to codes over the binary field ,  
i.e., codes over the set {0,1} with operators + (XOR)  
and · (AND). We denote the set of polynomials of indetermi-
nate  over as . For some  from 

 we denote the largest  where ,  
the degree of .

In general, the purpose of codes is to cope with trans-
mission errors. The main idea is to add redundancy to a mes-
sage and transmit the resulting codeword. At the receiver, 
the redundancy can then be used to recover the transmitted 
codeword, even if it got corrupted during transmission. This 
is called error correction. A much simpler task is to use the 
redundancy in order to determine whether the transmission 
was error-free or not. This is called error detection.

The message could, for example, be a polynomial 
 of degree at most  (having at most  nonzero 

coefficients) from . Such a message of message length 
 can be augmented by  redundant coefficients that are 

calculated as a function of the message. The process of aug-
menting message by redundancy is called encoding,  is 
called the CRC length,  the code length. The 
result of encoding is referred to as a codeword. Encoding is 
called systematic if in any codeword, message and redun-
dancy can be clearly separated (such as in the codeword

consisting of message  in the most significant  
coefficients and redundancy  in the least significant 
coefficients). Systematic encoders are preferred in practice 
due to their obvious implementation advantages.

One way of encoding messages , ,  
into codewords , , is to multiply 
them with a fixed generator polynomial

                       

of degree  from . 
 (1) 
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The set of all possible codewords obtainable in this way is 
called the CRC code , where we maintain the message 
length  as an index for purposes. This canonical way of 
encoding (multiplication of messages with the generator 
polynomial) is not systematic, message and redundancy are 
intertwined in the resulting codewords and cannot be clearly 
separated. Due to its definition in (1) one could also refer to 

 as a polynomial code. 
Systematic encoding can be achieved as follows. 

Instead of multiplying messages with the generator 
polynomial, the mapping

       

is performed. Using this form of encoding, the redundan-
cy is the polynomial remain-der of the division ,  
i.e., the remainder of polynomial long division (over 
) applied to message and generator polynomial. It is easy 
to see that the codewords obtained this way can be writ-
ten as ,  and thus 

. That is, systematic encoding leads to the 
same code  as canonical encoding, only the mapping 
from messages to codewords is different.

The effect of systematic encoding as presented before 
can be described in words: codewords are polynomials of 
degree at most , where the message is shifted 
into the  most significant coefficients  
and the redundancy is written into the  least significant 
coefficients .
The main reason for the popularity of polynomial codes 
as described above is the fact that the polynomial 
remainder of  can be calculated using a simple 
linear feedback shift register. In general, the register in  
Figure 1 calculates the polynomial remainder of 

, and stores it (after  clock 
cycles) in the memory elements . 

It is clear that the register can be used to calculate 
 as in (2) by setting  and 

. Note that  is fed into the regis-
ter starting with its most significant coefficient  and  
that its memory elements must be reset to some fixed  
binary vector (called the initialization vector) be-
forehand. After  is fed into the register it holds 

.
Besides calculating  as required for 

systematic encoding, the same register can also 
be used to determine whether a given polynomial 

, is a codeword. In case it is 
a codeword, it has to be a polynomial multiple of the generator 
polynomial  as stated in (1). But this implies that  
divides  and thus  has 
to hold if the register is fed with  
and . Otherwise (if 
at least one out of the  is nonzero after  clock 
cycles),  cannot be a codeword. It is important to 
note that the memory elements must be reset to the 
same initialization vector as used for encoding in the 
previous paragraph before the  are 
fed into the register. We stress that in case  is 
indeed a codeword, we have ,  

, where  

http://www.all4can.com
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and  are the coefficients of message  and 
redundancy r(x), respectively. 

In practice, CRC codes are used as follows: First, 
generator polynomial  and initialization vector are 
chosen as system parameters and made known to both 
transmitter and receiver. Each message  is encoded 
into a codeword  at the transmitter (systematically as 
in (2) using the linear feedback shift register from figure 1 
in order to calculate the redundancy .

The codeword is transmitted over a communications 
channel where it may be exposed to bit and burst errors. 
As a result, the received word at the receiver  may 
not be identical to . The receiver now uses the 
register (configured with  and the initialization vector) 
in order to check whether  is a codeword or not. If it is 
not a codeword then a transmission error is detected and 
appropriate measures are taken.

If it actually is a codeword then two cases are possible: 
Either  coincides with , which means errorfree 
transmission. Otherwise, if it does not coincide with ,  
the channel transformed  into another codeword  
from . The receiver has no way of distinguishing  
between the two cases and thus the latter case  
corresponds to an undetected error. Since the probability  
of having undetected errors depends on the actual 
generator polynomial, choosing generator polynomials  
that result in low undetected error rate is of utmost 
importance.

Properties of CRC codes

As we will see in the following, the undetected error rate 
is mainly determined by a code parameter referred to as 
minimum Hamming distance or, in the context of CRC 
codes, simply Hamming distance . It states the min-
imum number of coefficients, in which any two codewords 

,  differ. 
In our setting (since the considered polynomial 

codes are linear),  is defined by the minimum 
Hamming weight of the codewords from , i.e.,  

 

Figure 1: Linear feedback shift register for use with polynomial codes. All operators are from F_2, i.e., + denotes an XOR 
operation, b_i surrounded by a circle denotes an AND operation with b_i as one of the operands (Source: Dr. Christian 
Senger)

The Hamming weight  of a polynomial   
 is in turn defined as the number of its nonzero coef- 

ficients, i.e., 
Since the CRC length M is fixed (by the choice 

of generator polynomial) the code rate  
approaches one as the message length  grows. 
Consequently, larger  results in a denser packing of 
the linear code space and thus (in general) in smaller 
Hamming distance. Since CAN XL (both header and frame) 
generates a range of message lengths we have to carry 

along as an index for both  and . Transmission 
errors can be represented by nontrivial error polynomials 
 

                   
 

with  that distort transmitted 
codewords  into received polynomials 
            

In order to cause an undetected error, the channel has 
to cause at least  nonzero coefficients in , i.e., it 
has to cause  bit errors. It is not possible 
to take the transmitted  to a different codeword with a 
smaller number of bit errors and thus transmission errors 
with  <  bit errors can always be detected. 
Consequently, larger Hamming distances result in smaller 
undetected error rates, which is why we always aim for 
large Hamming distance in the rest of the paper.

Undetected error rate

The undetected error rate states the probability that trans-
mission of a codeword  results in received  
word  and . It can be calcu-
lated explicitly under the assumption (suggested in [6]) that 
the transmission channel is a binary symmetric channel 
(BSC) that flips each transmitted bit with cross-over prob-
ability . Besides this assumption, the weight distribution 

 of  is required. Its  
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components , give the 
number of codewords in  having Hamming weight . 
Despite being computationally not trivial, it is still possible 
to calculate weight distributions for moderately sized poly-
nomial codes. 

Under the given assumptions, the undetected error 
rate of a code can be calculated as

Since we assume a BSC it is  times less  
likely to have  compared to having 

. This fraction goes to infinity as  
and thus  is dominated by its first term, that is, 

.
As a consequence, our criterion for picking genera-

tor polynomials for the header CRC in Section V from mul-
tiple candidate polynomials with the same  is going to 
be small  for the full range of relevant message 
lengths . 

Guaranteed-detectable errors

Some transmission errors can be detected with guarantee. 
Take for example a code  with . Any two dis-
tinct codewords  differ in at least 6 coef-
ficients. That is, taking  and flipping at most 5 arbitrary 
coefficients cannot result in some . Or, in other  
words:

This shows that, in any case, up to  bit errors 
can be detected with guarantee. Many transmission errors 
with much larger Hamming weight can be detected as well 
but this can in general not be guaranteed. An exception 
(where there actually are guarantees) are burst errors of a 
certain maximal length as we will see in the following.

For any transmission error , 
we define the following two notions: The trailing coefficient 

 and the leading coefficient 
.

The value  
is referred to as the burst-length of the error. In general,  
detecting errors is easier if their Hamming weight and their 
burst-length are small.

If any  is a codeword then (by defini-
tion) it has to be a polynomial multiple of . That is, 

 for some . But this  
implies 

   
              

and thus
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As a result,  cannot be a codeword if 
 and consequently any 

transmission error can be detected as long as its burst-
length is at most .

In order to guarantee detection of preferably long 
burst errors it is instrumental to choose  with 
resulting in , which (with the above) guaran-
tees detection of error bursts up to burst-length . 

Generator polynomials from  hav-
ing the special form , where 

, impose the factor  on 
any codeword , i.e., any code-
word can be written as  with 

. For any such codeword 
holds  because in  we have 1 + 1 = 0 (XOR 
operation). But the evaluation at 1 of any polynomial from 

  results in 1 if its Hamming weight is odd and in 0 if 
the Hamming weight is even. This lets us conclude that all 
codewords from the resulting CRC code have even Ham-
ming weight and consequently a received word of odd 
Hamming can never be a codeword. In other words: if the 
generator polynomial  has x + 1 as a factor then all 
transmission errors  affected by an odd number of 
bit flips are detected with guarantee.

In summary we can list types of non-trivial transmis-
sion errors , that are guar-
anteed-detectable by CRC codes with certain generator 
polynomials g(x):
1. In any case:  is guaranteed-detectable as long as 

.
2. If  is guaranteed-detectable as long as it 

contains a single burst error of burst-length at most .
3. If  has  as a factor:  is guaranteed- 

detectable as long as  is odd. 

CAN XL frame structure

CAN XL frames consist of a multitude of fields, out of which 
some are protected by the header CRC (HCRC), some by 
the frame CRC (FCRC), and some by both. Table I pro-
vides an overview. Here, being protected by a CRC means 
being included in its message polynomials.

It can be seen in the table that besides the obvious 
data field also the header fields ID, RRS, PT, DLC, SBC as 
well as the HCRC redundancy are part of the FCRC mes-
sages. This approach, which provides extra protection to 
the header fields at negligible cost, was decided as a result 
of discussions with Dr. Arthur Mutter and Florian Hartwich, 
Robert Bosch. The same approach is taken in the Flexray 
standard. 

Some of the fields are affected by dynamic bit stuff-
ing after each run of five identical bits, namely SOF, ID, 
RRS, and IDE. The number of dynamic stuff bits is stored 
in the SBC field. Note that the last dynamic stuff bit may 
be added after the IDE field. Fixed stuff bits as well as any 
fixed-value fields are not included in any CRC calculation.

We emphasize that the dynamic stuff bits are pro-
tected by the HCRC but not by the FCRC. The explanation 
is given in the following.

Excluding dynamic stuff bits from CRC messages 
(as in Classical CAN) can result in an undetectable error 

caused by two bit flips if one bit flip adds and the other 
removes a dynamic stuff condition. This case is described 
in [7]. However, including dynamic stuff bits (as in CAN FD) 
makes the CRC code vulnerable to bit insertions and bit 
drops at dynamic stuff conditions as described in [3]. 

Therefore, it was decided to include the dynamic stuff 
bits in the HCRC calculation but to exclude them from the 
FCRC calculation. This enables detection of both afore-
mentioned types of errors.

Header CRC (HCRC)

As mentioned before, a dedicated header CRC is pro-
posed for CAN XL. The same approach is followed by the 
Flexray standard, where fixed-length headers are protect-
ed by an M = 11 bit CRC code that achieves Hamming dis-
tance 6. The Ethernet standard does not stipulate a dedi-
cated header CRC.

The achievable undetected error rates of codes with 
Hamming distance 6 are well below 10-20. For relevant  
CAN XL scenarios with data rates around 10 Mbit/s this 
means that less than one undetected header error per 
year per billion devices can be expected. Thus, going to 
larger Hamming distance seems to be over the top. Conse-
quently, the proposed generator polynomial for protecting 
the CAN XL header provides Hamming distance 6. 

Due to dynamic bit stuffing, HCRC message poly-
nomials consist of at least 34 and at most 37 coeffi-
cients (Table I). Thus, any HCRC candidate has to fulfill 

. 
It can be verified by exhaustive search that the small-

est CRC length M for which candidates fulfilling the HD 
requirement can be found is . Out of all the candidates, 
we propose the generator polynomial

for use in the HCRC. Our arguments are described in the 
following. Note that when we talk about header in this con-
text we mean HCRC message as given by table 1 plus 
HCRC parity. First, we have (as for any CRC code with 
Hamming distance 6):
1. Any erroneous header that is affected by no more than 

5 bit errors can be detected with guarantee.
Additionally, due to our special choice of (least 
significant coefficient  and factor ) we have:
2. Any erroneous header that is affected a single burst error 

of burst-length no more than 13 can be detected with 
guarantee. In other words, any received header where 
the bit flips are constrained to a set of 13 consecutive 
bits is guaranteed-detectable.

3. Any erroneous header that is affected by an odd number 
of bit errors can be detected with guarantee.

4. The undetected error rates  
are minimal among all possible candidate generator 
polynomials with properties (1) to (3).

We stress that many error patterns that do not fall  
into cases (1) to (3) can also be detected, but without 
guarantee.

For the convenience of the reader we state 
(x) in three commonly used notations:
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M ISO Normal Koopman
13 0x39E7 0x19E7 0x1CF3

In order to cope with the aforementioned vulnerability 
to bit insertions and bit drops related to dynamic bit stuff-
ing the linear feedback shift register must never assume 
the all-zero state in the first  clock cycles when it 
is fed with the message (cf. [3]). Here,  
denotes the number of dynamic stuff bits that occur in, 
in between or after the SOF, ID, RRS, and IDE fields. 
Note that 12 bits protected by the HCRC (ID and RRS 
fields) are affected by dynamic bit stuffing. The all-ze-
ro state can be avoided by choosing a particular initial-
ization vector such as the proposed initialization vector

 

Frame CRC (FCRC)

Standards competing with CAN XL such as Flexray and 
Ethernet utilize CRC codes that achieve Hamming distance 
HD = 4 for maximum-length frames. For minimum-length 
frames, Hamming distance HD = 8 (Flexray) and HD = 6 
(Ethernet) is achieved. The M = 24 generator polynomial 
0xAEB6E5 (Koopman notation) used in Flexray achieves 
HD = 8 only for ultra short payload sizes (up to 8 byte) and 
goes down to HD = 6 already at a payload size of 9 byte. 
On the other hand, it maintains HD = 6 almost up to the 
maximal payload size of 259 byte. It is thus fair to say that 
the Flexray FCRC provides HD = 6 for almost all practical 
payload sizes.

The M = 32 generator polynomial 0x82608EDB (Koop-
man notation) used in Ethernet performs comparatively 
bad (despite having 8 bit more redundancy): it achieves 
only HD =5 for very small payload sizes and this deterio-
rates to HD = 4 already at a payload size of 372 byte. 

In order to achieve comparable CRC error detection 
performance as the Flexray and Ethernet polynomials, we 
propose to use a generator polynomial that achieves HD 
= 6 throughout the full range of possible CAN XL payload 
sizes, i.e., from 1 byte to 2 048 byte. This is not possible 
with the = 24 Flexray polynomial and, in fact, it is not 

Table 1: Fields of the CAN XL frame that are protected by either of the two CRCs

possible with any generator polynomial with < 31. Thus, 
in order to provide some safety margin, we propose to use 
a generator polynomial with = 32 for the CAN XL FCRC 
(same CRC length as Ethernet). 

It follows that the FCRC message length varies 
between 34 + 13 + 1 · 8 = 56 and 34 + 13 + 2048 · 8 = 16431 bit.  
Thus, the task at hand is to find an  = 32 generator 
polynomial that achieves .  
Ideally (in order to lower the undetected error rate by 
guaranteed detection of long burst errors and any odd 
number of bit errors), the polynomial should have  
and it should be divisible by .

Finding such polynomials is a computationally very 
demanding task. For the case  = 32, it has already been 
tackled in literature. Reference [8] lists the  = 32 gen-
erator polynomial 0xFA567D89 (Koopman notation). The 
same polynomial was already found in [9], but wrongly list-
ed as 0x1F6ACFB13 (normal notation), while it should have 
been 0x1F4ACFB13 as pointed out by [8].

The Hamming distance profile of the code generated 
by 0xFA567D89 is shown (among the Flexray and Ether-
net polynomials) in Figure 2, solid curve. It can be clearly 
seen that the polynomial achieves HD = 8 for small pay-
load sizes. 

The Hamming distance goes down to HD = 6 at mes-
sage length  = 275 bit, which is maintained until the 
maximal payload size. As stated, this includes most of the 
header fields as well as the HCRC redundancy and thus 
double-protecting these fields by the FCRC causes no 
degradation in terms of Hamming distance.

We stress that 0xFA567D89 never falls below one of 
the Flexray and Ethernet polynomials in the full range of 
possible CAN XL payload sizes (it actually also outper-
forms the Ethernet polynomial over the full range of possi-
ble Ethernet payload sizes and also the Flexray polynomial 
over almost the full range of Flexray payload sizes). 

Using the code generated by 0xFA567D89 results in 
the following properties of the FCRC:
1. Any erroneous frame (including all fields marked as “part 

of FCRC message” in table 1) that is affected by no more 
than 5 bit errors can be detected with guarantee.
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Additionally, due to the fact that 0xFA567D89 has 
least significant coefficient g_0  = 1 and factor x + 1 (see 
definition of g_HCRC (x) below) we have:
2. Any erroneous frame that is affected by a single burst 

error of burst-length no more than 32 can be detected 
with guarantee. In other words, any received header 
where the bit flips are constrained to a set of 32 consec-
utive bit is guaranteed-detectable.

3. Any erroneous header that is affected by an odd num-
ber of bit errors can be detected with guarantee.

We stress once again that many error patterns that do 
not fall into cases (1) to (3) can also be detected, but with-
out guarantee.

Due to its aforementioned properties we propose to 
use 0xFA567D89 as the FCRC generator polynomial, that 
is, we propose
         

 

For the convenience of the reader we state  
in the three commonly used notations:

M ISO Normal Koopman
13 0x1F4ACFB13 0xF4ACFB13 0xF4ACFB13

The initialization vector plays only a minor role since 
dynamic stuff bits are excluded from the FCRC. However, 
defining an initialization vector is inevitable and we pro-
pose to use 

Conclusion and outlook

We presented generator polynomials for use in the 
header and frame CRCs of the current CAN XL draft and 
showed that their error correction performance matches 
or outperforms the CRC codes in competing standards. 

Figure 2: Hamming distance profiles for the Flexray, Ethernet, and proposed CAN XL FCRC generator polynomials. Note 
that the x-axis is logarithmic and given in byte and thus message length is k = 8 · x (since k is given in bit). All polynomials 
are given in Koopman notation. (Source: Dr. Christian Senger)

Further improvements in the undetected error rate could 
be achieved by taking the actual error patterns that occur 
in CAN XL systems into consideration, which would require 
a detailed characterization of those patterns for different 
real-world scenarios. So far, our proposal is based on the 
simplifying assumption that the CAN XL bus behaves like 
a binary symmetric channel with occasional error bursts. 
In order to improve the detection capabilities for burst 
errors, CRC codes over larger alphabets could be taken 
into consideration.

Appendix

Generator polynomials are frequently represented as 
hexadecimal numbers in order to save space. One way to 
do that is used in ISO 11898 [10] and works as follows: 
write the coefficient vector of the polynomial with most 
significant bit (MSB) first, pad it on the left with zeros to 
length 4s, where , and then interpret 
each block of four bits by the corresponding hexadecimal 
number (again MSB left). This is called the ISO notation.  
in which, for example, the generator polynomial 

 
 
having coefficient vector 
and , is represented by

For the first alternative notation, write the coefficient 
vector with MSB first, pad it on the left with zeros to length 
4s, replace the leftmost nonzero bit (i.e., g_M  = 1) by a zero 
and then interpret each block of four by the correspond-
ing hexadecimal number. This is called the normal nota-
tion in which, for example, g(x) as above is represented by 
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Another alternative representation (popularized by 
Koopman [8]) can be obtained for  that fulfill the 

 property (such as the polynomials proposed): 
write the coefficient vector with most significant bit (MSB) 
first, pad it on the left with zeros to length , de-
lete the rightmost bit (i.e., ) and then interpret each 
block of four by the corresponding hexadecimal number. 
This is called the Koopman notation. In Koopman notation, 
g(x) as above is represented by
 

It is straightforward to recover g(x) from any of the 
hexadecimal notations by simply reversing the respective 
process.                                                                              W
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